Video conferencing is now widely used both in wired and wireless network. Quality of Service (QoS) depends upon the efficient utilization of the network bandwidth. Internet Protocol (IP) multicasting is simultaneous transmission of data to multiple destination. IP multicast uses one-to-many technique, wherein a single packet is sent to multiple destinations in a multicast group identified by a single IP destination group address. Core failure is a serious issue in multicast networks with the QOS diminishing even if alternative routes are available. This paper investigates the performance of streaming data which require stringent QoS using unicast and multicast communication with Protocol Independent Multicasting – Sparse Mode (PIM-SM) . An intermediate core is failed and the performance of the network measured. Results obtained show the degradation due to core failure affects the QOS for streaming data.

References

Performance of Video Conferencing using Protocol Independent Multicast Routing with Core failure

- L. Zosin and S. Khuller, "On Directed Steiner Trees," SODA'02, pp. 59-63.
- RFC 2362 - Protocol Independent Multicast-Sparse Mode (PIM-SM)
- Pragyansmita Paul and S V Raghavan "Survey of Multicast routing Algorithms and Protocols;"
- Mansoor Mohsin, Winnie Wong, and Yogesh Bhatt "Support for Real- Time Traffic in the Internet, and Qos Issues.
- Aaron Striegel and G. Manimaran, Iowa State University "A Survey of Qos Multicasting Issues;" IEEE Communications Magazine, June 2002, pp82-87.

Index Terms

Computer Science Multimedia

Keywords

Unicast Multicast Protocol Independent Multicast – Sparse Mode Internet Group Management Protocol