In this paper a comparative study of the existing Content Based Image Retrieval (CBIR) techniques is presented. Also a novel idea of tiling the images after transforming them into the frequency domain is proposed. The transformed images are broken down into fragments of 4X4 and feature extraction is done after taking the average of the energies of the corresponding fragments, while always selecting the highest energy coefficient. This approach provided the highest crossover point of 0.602 for Kekre Complete Transform. The compared techniques were applied to a database of 600 images spread over 12 different categories. The comparison of transforms considers 99.5% of the total energy contained in a query image and uses only those transform coefficients which contribute to this energy. The results obtained from such a novel energy based comparison show that the percentage of feature vector coefficients to be used for query execution can be as low as 12.89% as seen for Haar Column Transform.
Energy based Comparative Study of CBIR Techniques and a Novel approach of Image Splitting in the Frequency Domain for Efficient Retrieval

References

- Dr. N. Krishnan, M. Sheerin Banu, C. Callins Christiyana, "Content Based Image Retrieval using Dominant Color Identification Based on Foreground Objects", In International Conference on Computational Intelligence and Multimedia Applications, 2007.
- H. B. Kekre, Sudeep D. Thepade, "Color Traits Transfer to Grayscale Images", In Proc. of IEEE First International Conference on Emerging Trends in Engg. & Technology, (ICETET-08), G. H. Raisoni COE, Nagpur, INDIA.
- Image Source: http://www.mp-webspace4.com/media/iStock_000000466_1.jpg
- Image Source: http://www.schroedersorchard.com/Schroedersorchard/Contact_Us_files/red%20apple_6.png

Index Terms
Computer Science Signal Processing

Keywords
Cbir Row Mean Column Mean Image Transform Dct Dst Haar Hartley Kekre Walsh
Image Splitting
Energy Compaction
Precision
Recall
Lsrr
Energy based Comparative Study of CBIR Techniques and a Novel approach of Image Splitting in the Frequency Domain for Efficient Retrieval