Using Treaps for Optimization of Graph Storage

Adjacency matrix is an effective technique used to represent a graph or a Social network comprising of large number of vertices and edges. The intent is of this paper is to optimize the graph storage and mapping without using a large adjacency matrix to represent a large graph. A special data structure Treap, a combination of binary search tree and heaps has been used as a replacement to a large adjacency matrix. It has been experimentally evaluated that the proposed approach significantly improves the space occupied by adjacency matrix and helps the graph to grow dynamically without affecting the current data structure.

References

- Bernard Elspas and James Turner. 1970: "Graphs with circulant adjacency matrices"; 297
Using Treaps for Optimization of Graph Storage

Graphs on Multiprocessor; SoC, Symposium on SoC.
- Chris Lattner: "Heap Data Structure Analysis and Optimization"; Ph. D. Thesis
- A. Cohen. 1999; "Parallelization via constrained storage mapping optimization";
- P. Feautrier. 2001; "The use of farkas lemma in memory optimization";
- R. Seidel and C. R. Aragon. 1996; "Randomized search trees";
Using Treaps for Optimization of Graph Storage

Algorithmica, 16:464-497.

Index Terms

Computer Science Data Structures

Keywords

Storage Optimization Graph Mapping Treap Data Structure Adjacency Matrix