Abstract

This paper presents an artificial neural network based fault identification system for a five-level cascaded H-Bridge multi-level inverter (MLI). A Radial Basis Function (RBF) neural network is trained using radial basis function training algorithm to identify the location of the switch that is misfired at an instant prior to its actual firing time. The proposed fault diagnostic system identifies the fault with a greater accuracy and the results to various input patterns are presented in a tabular format for easy comprehension.

References

- Surin Komfoi, Chatrchai Aimsaard, "A 5-Level Cascaded Hybrid Multi-level Inverter for Interfacing with Renewable Energy Resources", ECTI-CON 2009, pp. 284-287
- Mariusz Malinowski, K. Gopakumar, Jose Rodriguez and Marcelo A. Perez, "A Survey on Cascaded Multilevel Inverters", IEEE Trans. on Industrial Electronics, Vol. 57,
Diagnosis of Faults due to Misfiring of Switches of a Cascaded H-Bridge Multi-level Inverter using Artificial Neural Networks

Index Terms

Computer Science Artificial Intelligence

Keywords

Artificial Neural Networks Cascaded H-bridge Inverter Multi-level Inverter rbf Radial Basis Function

Switch Misfiring