Abstract

In the recent days many applications need fast transfer of large amount of data over network. So the performance of TCP and SCTP in wireless network is an active area. After every failure the connection between source and destination gets disconnected. But the failure can be because of congestion packet loss or wireless packet loss. In this paper, a new mechanism is introduced by which it avoids the failure caused by congestion by estimating the energy of each node, bandwidth of the packet, and considering the node that has more radio range. So when the packet need to be send, the route is established by broadcasting to the nearby nodes and the energy of every node in the network is analyzed and maintained statically so the node that has more energy and bandwidth is selected. And some amount of energy gets drained on sending more packets, dynamically the traffic is reduced from the sender and by using the reactive routing protocol link is re-established by broadcasting to the nearby node. Since SCTP has multi-homing technique it prevents link failure by routing with alternate path. So instead of detecting the congestion after it occur this approach gives better results So the packet loss rate and end-end delay will be reduced which in turn improves the QOS of the system.
References

- Kai Shi, Yantai Shu, Oliver Yang, and Jiarong Luo, "Receiver-Assisted Congestion Control to Achieve High Throughput in Lossy Wireless Networks", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 2, APRIL 2010 Page(s): 491 - 496. DOI: 10.1109/TNS.2009.2037622
- Han, Hu, "Performance improvement of TCP_Reno based on monitoring the wireless packet loss rate", IEEE 3rd International Conference on Communication Software and Networks (ICCSN), Page(s): 469 - 472, February 2011, DOI: 10.1109/ICCSN.2011.6014766
Index Terms

Computer Science
Wireless

Keywords

Energy Bandwidth Sctp Tcp Congestion Control Routing