Abstract

The image gets corrupted by Additive White Gaussian Noise during the process of acquisition, transmission, storage and retrieval. Denoising refers to suppressing the noise while retaining the edges and other important detailed structures as much as possible. This paper presents a general structure of the recovery of images using a combination of variation methods and wavelet analysis. The variation formulation of the problem allows us to build the properties of the recovered signal directly into the analytical machinery. The efficient wavelet representation allows us to capture and preserve sharp features in the signal while it evolves in accordance with the variation laws. We propose the three different variation model for removing noise as Horizontal, vertical and Cluster. Horizontal and Vertical variation model obtained the threshold at each decomposed level of Wavelet. Cluster variation model moving mask in different wavelet sub band. This proposed scheme has better PSNR as compared to other existing technique.

References

- Murat Belge, Misha E. Kilmer, and Eric L. Miller, Member, IEEE, "Wavelet Domain

- Fang fang Dong, Jeanine Yang, Chunxiao Liu, And De-Xing Kong; A Fast Algorithm For Vectorial TV-Based Image Restoration; SIAM International Journal Of Numerical Analysis And Modeling
- Yang Wang and Haomin Zhou; Total Variation Wavelet-Based Medical Image Denoising; International Journal of Biomedical Imaging Volume 2006, Article ID 89095, Pages 1–6
- Yilun Wang, Junfeng Yang, Wotao Yin, and Yin Zhang; A New Alternating Minimization Algorithm for Total Variation Image Reconstruction; Rice University Technical Report TR 07-10.
- Banazier A. Abraham, Yasser Kadah; Speckle Noise Reduction Method Combining Total Variation and Wavelet Shrinkage for Clinical Ultrasound Imaging; IEEE 2011.
- David C. Dobson and Curtis R. Vogel; Convergence of an Iterative Method for

Index Terms

Computer Science Signal Processing

Keywords

Horizontal Variation Vertical Variation Cluster Variation Wavelet Noise