Abstract

Robust controllers designed via H? Loop Shaping are complicated and are of order higher than that of the plant. It is very difficult to implement these controllers in practical engineering applications. To overcome this problem, Genetic Algorithm is used to approximate a robust PID controller from H? Loop Shaping controller so that the difficulties in implementation of higher order controller can be avoided.

References

- D. J. N. Limebeer, 1993, &quot;On the design of robust two degree of freedom controllers&quot; Automatica, Vol 29, Issue 1, Pages 157–168.
- Somyot Kaitwanidvilai, 2008, &quot;Design of Structured Controller Satisfying H? Loop Shaping using Evolutionary Optimization: Application to a Pneumatic Robot Arm&quot; Engineering Letters, 16:2, EL_16_2_03.
- Wen Tan, Horacio J. Marquez, and Tongwen Chen 2002 &quot;Multivariable Robust Controller Design for a Boiler System&quot; IEEE Transactions on Control Systems
Application of Genetic Algorithm for Tuning of Reduced Ordered Robust PID Controller

Technology, vol. 10, no. 5.
- Daniel Ankelhed, 2011, &quot;On design of low order H-infinity Controllers&quot;
- Fu-Cheng Wan and Hsuan-Tsung Chen, 2009, &quot;Design and implementation of fixed-order robust controllers for a proton exchange membrane fuel cell system&quot;
- Rick Hyde and Jeremy Hodgson, 2000 &quot;Autopilot designs using Mu- Analysis and Synthesis&quot; Math Works MATLAB Digest.
- &quot;Modeling Airframe Dynamics&quot; 2004, Aerospace Blockset, Demos, MATLAB 7.

Index Terms

Computer Science Control Systems

Keywords

Robust Controller H? Loop Shaping Weight Selection Genetic Algorithm PID Controller And Missile Control System