Abstract

Fabric defect detection and classification plays an important role in inspection of fabric products. Many fabric defects are very small and indistinguishable, which can be detected only by monitoring the variation in the intensity. Currently, in almost all the fabric industries the process of defect detection is done manually using skilled labor. An automated defect detection and identification system would naturally enhance the product quality and result in improved productivity to meet both customer demands and also reduce the costs associated with off-quality. The main objective of this proposed work is to check whether the fabric material is defective or not, if defective, then identify the location and type of the defect. This paper deals with the defect detection process using Multi Resolution Combined Statistical and Spatial Frequency (MRCSF), Markov Random Field Matrix method (MRFM), Gray Level Weighted Matrix (GLWM) and Gray Level Co-occurrence Matrix (GLCM).

References

- Diagnostic Study of Trichy Handloom Cluster under the MSME Clusters
- R. C. M. Reddy, I. A. S, Member Secretary, Textiles Committee, Ministry of Textiles,
A catalogue on woven fabric defects and visual inspection.; Quality Appraisal and
Export Promotion, & Market Research Wings, Textiles Committee, MUMBAI - 400 018.
- Sabeenian R. S. and Palanisamy V., Texture Based Medical Image
Classification of Computed Tomography images using MRCSF; Published in the
International Journal of Medical Engineering and Informatics (IJMEI, Inderscience), Vol. 1, No. 4 pp 459-472
- Escofet J. , Milan M. S. and Rallo M. (2001), Modelling of Woven Fabric
1878-1894.
Gabor Filters; Proceedings of World Academy of Science, Engineering and Technology,
Vol. 13, pp. 75-80.
- Arivazhagan S. and Ganesan L. (2003), Texture Classification using Wavelet
Transform; Pattern Recognition Letters, Vol. 24, Nos. 9-10, pp. 1513-1521.
- Arivazhagan S. , Ganesan L. and Bama S. (2006), Fault segmentation in fabric
images using Gabor wavelet transform; International Journal of Machine Vision and
- Haralick R. M. , Shangmugam K. and Dinstein L. (1973), Textural Features for
610-621.
- Sabeenian R. S. and Palanisamy V., Comparison of Efficiency for Texture Image
Classification Using MRMRF and GLCM Techniques; Published in International Journal
of Computers Information Technology and Engineering (IJCITAE), Vol. 2, No. 2, December
2008, pp. 87-93.
- Sabeenian R. S and M. E. Paramasivam, Handloom Silk Fabric Defect Detection
using First order Statistical Features on a NIOS II Processor; Published in the Springer
International Conference on Advances in Information and Communication Technologies ICT
- M. E. Paramasivam and R. S. Sabeenian, A Soft Core Processor based
Implementation of DWT for Identifying Defects in Fabric; in the proceedings of 2nd
National Conference on Signal Processing Communications and VLSI Design (NCSCV
Computer Vision based Defect Detection and Identification in Handloom Silk Fabrics

7th and 8th May 2010, held by Department of Electronics and Communication Engineering Anna University Coimbatore.

Index Terms
Keywords
Defect Detection In Silk Fabrics Pattern Recognition