Abstract

The primary challenge of cloud service providers is finding ways to maintain a high degree of Quality of Service (QoS) in a cost-effective manner to ensure either profitability (for business-based cloud service providers) or cost avoidance (for government cloud service providers). The traditional approach to improving system performance is to upgrade the servers and/or network backbone, an expensive undertaking. The authors used OPNET Modeler to represent distributed system architecture supporting a variety of application services and defined a framework for measuring QoS from the end-user's perspective and discovered that there is no direct relationship between server/network upgrades and overall QoS in distributed systems. This framework can be used as a decision support tool for cloud service providers to optimize the QoS of their systems by choosing upgrade strategies that provide the greatest "bang for the buck."

References

- Wang, P., Chen, H., Yang, X., & Lu, X. (2011) "Active queue management of
delay network based on constrained model predictive control. " Proceedings of the 2011
Chinese Control and Decision Conference, pp814 – 818 doi: 10. 1109/CCDC. 2011. 5968294
- IEEE Standard 802. 16 Working Group, IEEE Standard for Local and Metropolitan Area
Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems (Revision of
http://www. spec. org/spec/
- J. D. Sterman. Business Dynamics: Systems Thinking and Modeling for a Complex
provisioning in the cloud. HotCloud’09: Proceedings of the 2009 Conference on
ISSN: 0163-5999
state-of-the-art and research challenges. Journal of Internet Server Applications 1,
IVEW. http://idcdocserv. com/1142
phones. http://gigaom.com/mobile/verizon-charging-4g-prices-but-selling-a-lot-of-3g-phones/
http://www. gartner. com/it/page. jsp?id=1454221

Index Terms

Computer Science
Cloud Computing

Keywords

Computernetworks
Quality Of Service
Modeling And Simulation
Computer Performance
Distributed Systems