Abstract

Nowadays, indexing has become essential for fast retrieval of results. Spatial databases are used in many applications which demand faster retrieval of data. These data are multi-dimensional. Designing index structure for spatial databases is current area of research. R-Tree is the most widely used index structure for multi-dimensional data. Many variants of R-Tree has evolved with each performing better in some aspect like query retrieval, insertion cost, application specific and so on. In this work, state-of-art of variants in R-Tree is presented. This paper provides an idea of the present development in spatial indexing and paves way for the researchers to explore and analyze the difficulties and trade-offs in the work. The R-Tree variants are classified according to the way they are different from the original R-Tree either in the process of construction or whether it is a hybrid of R-Tree and some other structure or whether it is an extension of R-Tree to support many other applications.

References

A State-of-Art in R-Tree Variants for Spatial Indexing

- Dongseop Kwon, Sangjun Lee and Sukho Lee, "Indexing the Current Positions of Moving Objects Using the Lazy Update R-tree", Proceedings of the 3rd International
A State-of-Art in R-Tree Variants for Spatial Indexing

- Pan Jin and Quanyou Song, "A Novel Index Structure R*Q-Tree based on Lazy Splitting and Clustering," Proceedings of the International Conference on Computer
Index Terms

Computer Science Communication Systems

Keywords

R-tree Spatial Index Spatio-temporal Index R-tree Variants