Abstract

In this contribution we provide a simple and useful state estimation approach for a general class of non linear models that describe dynamic power systems. At first we show, through a small power network, that this class of systems is modeled by non linear differential-algebraic equations that we may always transform to a system of ordinary differential equations. After, we investigate a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on 3 and 5 buses test systems.

References

On the state estimation for Dynamic Power System

1110–1118.
- Scholtz E. 2004. Observer based monitors and distributed wave controllers for
electromechanical disturbances in power systems. Doctoral Thesis, Massachusetts Institute
Technology, USA.
- C. J. Da?s. 2005. An observbility formulation for nonlinear power systems modeled as
differential algebraic systems. Ph. D. dissertation, Drexel university, PA, USA.
- Debes A. S. and Larson R. E. 1970. A dynamic estimator for tracking the state of a
- Aslund J. and Frisk F. 2006. An observer for nonlinear differential-algebraic
systems. Automatica. 42, 959–965.
- Isabel M. F. and Barbosa F. P. 1994. Square root ?lter algorithm for dynamic state
estimation of electric power systems. In Electrotechnical Conference, 7th Mediterranean,
Antalya, Turkey, 877–880.
- Shih K. and Huang S. 2002. Application of a robust algorithm for dynamic state
- B. W. Gordon. 2003. Dynamic sliding manifolds for realization of high index
- D. Karlsson and D. J. Hill. 1994. Modelling and identiﬁcation of nonlinear dynamic
loads in power systems. IEEE Trans. on Power Syst. 9, 157–166.
9, 267–281.
- M. Boutayeb and C. Aubry. 1999. A strong tracking extended kalman observer for
- M. Boutayeb, (2000). Identiﬁcation of nonlinear systems in the presence of unknown
- Y. Song and J. Grizzle. 1995. The extended kalman ﬁlter as a local asymptotic
observer for nonlinear discrete time systems. J. Math. Syst. Estimation and Control. 5,
59–78.

Index Terms

Computer Science

Power Systems
Keywords
Power System Dynamics State Estimation Extended Kalman Filter Convergence Analysis