Abstract

An accurate and standardized technique for breast tumor segmentation is a critical step for monitoring and quantifying breast cancer. The fully automated tumor segmentation in mammograms presents many challenges related to characteristics of an image. In this paper, two different methods for mass detection are applied. First method uses morphological component analysis and multiple layer thresholding. Second method uses watershed segmentation. Features are extracted and the best one is found out for efficient identification of breast cancer.

References

diagnosis of breast cancer: Towards the detection of subtle signs,
- R. M. Rangayyan, L. Shen, et al., Improvement of sensitivity of breast cancer diagnosis with adaptive neighbourhood contrast enhancement of mammograms,
- S. K. Bandyopadhyay, A Survey on Preprocessing Techniques of Mammogram for the Detection of Breast Cancer,
- R. M. Rangayyan, L. Shen, et al., Improvement of sensitivity of breast cancer diagnosis with adaptive neighbourhood contrast enhancement of mammograms,
- S. K. Bandyopadhyay, A Survey on Preprocessing Techniques of Mammogram Image for the Detection of Breast Cancer,
- J. G. Schavemaker, M. J. Reinders, J. J. Gerbrands, and E. Backer, Image sharpening by morphological filtering,
- A. E. Hassanien and E. H. Tarek Abed, 2003. Digital Mammography Image Analysis System Based on Mathematical Morphology,
- H. S. Sheshadri and A. Kandaswamy, Detection of Breast Cancer Tumor based on Morphological Watershed Algorithm,
- Vincent L, Soille P, Watersheds in digital spaces: an efficient algorithm, based on immersion simulations,
- Jaya Sharma & Sujeet Sharma, Mammogram image segmentation using watershed,
Analysis of Tumor Characteristics based on MCA Decomposition and Watershed Segmentation

Index Terms

Computer Science
Pattern Recognition

Keywords

Breast Cancer
Morphological Component Analysis
Undecimated Wavelet Transform
Watershed Segmentation