Antenna arrays yield multiple, simultaneous available beams. These beams can be made to have high gain, low side lobes and controlled beam width. In conventional beam forming, the smallest beam width depends on the geometric dimensions of the receiving array. This problem may overcome by the Hyper beam invention. The linear array when implemented using Hyper beam technique, there is a considerable reduction of side lobes and beam width compared to the conventional beam forming. As a result, the relevant equations pertaining to normal linear array and the Hyper linear array are presented. The effect of the Hyper beam exponent on the beam patterns are shown.
References

- R. S. Walker, Bearing accuracy and resolution bounds of high-resolution beam formers, in Proc. IEEE ICASSP, 85, Tampa.
- Arun K. Bhattacharayya, Phased Array Antennas, Wiley series in Microwave and Optical Engineering, Chapter 5.
- Yao Xu; Cao Xiang-yu; Yang Qun; Wang Pan-pan, Pattern synthesis for adaptive antenna array with compensation of effects on mutual coupling.
- Titus Lo and John Litva, Adaptive Beam-Space Nulling of Multipath Signals.
- Ching-Yih Tseng, Member, IEEE, and Lloyd J. Griffiths, A Unified Approach to the Design of Linear Constraints in Minimum Variance Adaptive Beamformers.
- B. P. Ng M. H. Er C. Kot, Linear array geometry synthesis with minimum sidelobe level and null control.
- Shiann-Jeng Yu and Ju-Hong Lee, Adaptive Array Beamforming Based on an Efficient Technique.
- Renbiao Wu, Zheng Bao and Yuanliang Ma Control of Peak Sidelobe Level in Adaptive Arrays.
- Sotirios K. Goudos, George S. Miaris, Katherine Siakavara, and John N. Sahalos, "On the Orthogonal Nonuniform Synthesis From a Set of Uniform Linear Array".
- Suhyun Park, Andrei B. Karpiouk, Salavat R. Aglyamov, Stanislav Y. Emelianov, "Adaptive beamforming for photoacoustic imaging using linear array transducer".

Index Terms

Computer Science
Communications

Keywords

Hyper Beam
Linear Array Antenna
Side Lobe Level
Beam Width