A Survey of Multicasting in Optical Burst Switched Networks: Future Research Directions

Abstract

A promising solution to increasing bursty traffic over the Internet can be Optical Burst Switched (OBS) networks with scalable and efficient multicast support. The efficiency of multicasting in OBS networks depends on: the burstification process, the multicasting schemes, tree sharing strategies, construction of shared trees, multicast schemes for dynamic sessions and membership. In this article, the contributions of various researchers are studied thoroughly and compared to survey the various approaches and problems of multicasting in OBS networks and outline several future research directions in terms of applications in business, especially in Business-to-Business (B2B) and Business-to-Consumer (B2C) Models, through optimal resource utilization of QoS aware multicasting in OBS networks.

References

- M. Yoo, M. Jeong, and C. Qiao, "A high speed protocol for bursty traffic in optical..."
- M. Jeong, C. Qiao, Y. Xiong, "Reliable WDM Multicast in Optical Burst-Switched Networks;" (submitted to journal)
- X. Huang, Q. She, T. Zhang, K. Lu, J. P. Jue, "Small Group Multicast with Deflection Routing in Optical Burst Switched Networks;"
- M. Jeong, C. Qiao and M. Vandenboute, "Distributed Shared Multicast Tree Construction Protocols for Tree-Shared Multicasting in OBS Networks;"
- L. Kou, G. Markowski, and L. Berman, "A fast algorithm for steiner trees;"


- Xiaodong Huang, Qingya Shet, Tao Zhang, Kejie Lu, and Jason P. Juet, "Small Group Multicast with Deflection Routing in Optical Burst Switched Networks"

Index Terms

Computer Science Communications

Keywords

Obs Multicasting Tree Sharing Strategies Shared Trees Multicast Schemes Multicasting In Obs