Abstract

Every human activity is controlled and directed by brain. For each such activity there is equivalent action potential which gets generated. This action potential has a corresponding low power electrical signal. For different human actions different electrical signals are generated. This paper gives a definitive study of brain’s rhythms which are generated during motor imagery activities. The current applications of these rhythms are also briefly elaborated. We also propose a generic mu rhythm based locking system which can be used for home security, bank locker security, vehicle locking and at many other places.

References

- Georg E. Fabiani, Dennis J. McFarland, Jonathan R. Wolpaw, Georg Pfurtscheller, Conversion of EEG activity into cursor movement by a brain-computer interface (BCI), IEEE transactions on neural systems and rehabilitation engineering, Volume 12 No. 3 , September 2004
BrainLock: A Generic Mu Rhythm based Locking System

- Jorge Bautista Ochoa, Gary Garcia Molina, Touradj Ebrahimi. EEG Signal Classification for Brain Computer Interface Applications, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, March 28th, 2002

- E. Niedermeyer, A. Goldszmidt, D. Ryan, Mu Rhythm Status; and clinical correlates, Clinical EEG Neuroscience. 35 (2004) 84-87

- Jaime A. Pieda, The functional significance of mu rhythms: Translating seeing and hearing into doing; Brain Research Reviews 50 (2005) 57-68

- P. R. Kennedy, R. A. Bakay, M. M. Moore, and J. Goldswaite, Direct control of a computer from the human central nervous system; IEEE Trans. Rehab. Eng., vol. 8,
BrainLock: A Generic Mu Rhythm based Locking System

- J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,
 "Brain-computer interfaces for communication and control," Electroencephalography.
- D. J. McFarland, G. W. Neat, R. F. Read, and J. R. Wolpaw, "An EEG based
- J. R. Wolpaw and D. J. McFarland, "Multichannel EEG-based brain computer
- J. R. Wolpaw and D. J. McFarland, "Control of a two-dimensional movement
 EEG-based brain computer interface for cursor control. Electroencephalography Clinical
 Neurophysiology, 78, 252–259.
 scalp-recorded sensorimotor rhythms in humans. Program No. 607. 2. 2003 Abstract
 Viewer/Itinerary Planner. Society for Neuroscience, Online, Washington, DC.
- McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. "Mu and beta rhythm
 topographies during motor imagery and actual movement." Brain Topographies 2000a;
 3:177–186.
- Wolpaw JR, Flotzinger D, Pfurtscheller G, McFarland DJ. Timing of EEG based cursor
- Vaughan TM, Sarnacki WA, McFarland DJ, Wolpaw JR. EEG-based communication
 with topographically differentiated mu and beta rhythms. Society of Neuroscience Abstract
- Bhor Rohan T., Kad Reshma H., Katariya Payal J., Rajneesh Kaur Bedi, Gove
 Nitinkumar R., "Motor imagery for mouse automation and control," IJCISIS October
 2011 issue.
 386-395
- Cumming J., Hall C., 2002 deliberate imagery practice: the development of imagery
 skills in competitive athletes. J. Sports Sci. 20, 137-145
- Bangert M., Haeusler U., Altenmuller E. 2001, on proactive: how the brain connects
- Gove Nitinkumar Rajendra, Bedi RajneeshKaur, "A new approach to data

Index Terms

Computer Science
Human-computer Interface
Keywords
Brain Waves ? Waves Bci Hmi User Interfaces