Abstract

Every human activity is controlled and directed by brain. For each such activity there is equivalent action potential which gets generated. This action potential has a corresponding low power electrical signal. For different human actions different electrical signals are generated. This paper gives a definitive study of brain ‘? rhythms’ which are generated during motor imagery activities. The current applications of these rhythms are also briefly elaborated. We also propose a generic mu rhythm based locking system which can be used for home security, bank locker security, vehicle locking and at many other places.

References

- Georg E. Fabiani, Dennis J. McFarland, Jonathan R. Wolpaw, GeOE ,Pfurtscheller ,Conversion of EEG activity into cursor movement by a brain-computer interface(BCI), IEEE transactions on neural systems and rehabilitation engineering, Volume 12 No. 3 ,September 2004
- Jorge Baztarrica Ochoa, Gary Garcia Molina, Touradj Ebrahimi. EEG Signal Classification for Brain Computer Interface Applications, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, March 28th, 2002
- A. Tzelepi, T. Bezerianos, I. Bodis-Wollner; Functional properties of sub-bands of oscillatory brain waves to pattern visual stimulation in man; clinical neurophysiology volume 111, Issue 2, 1 February 2000, Pages 259-269
- E. Niedermeyer, A. Goldszmidt, D. Ryan; Mu Rhythm Status; and clinical correlates, Clinical EEG Neuroscience. 35 (2004) 84-87
- Jaime A. Pieda, The functional significance of mu rhythms: Translating seeing and hearing into doing; Brain Research Reviews 50 (2005) 57-68
- P. R. Kennedy, R. A. Bakay, M. M. Moore, and J. Goldwaithe; Direct control of a computer from the human central nervous system; IEEE Trans. Rehab. Eng., vol. 8,

Index Terms

Computer Science Human-computer Interface
Keywords
Brain Waves ? Waves Bci Hmi User Interfaces