Abstract

Given a graph $G = (V,E)$, a set $W \subseteq V$ is a resolving set if for each pair of distinct vertices $u, v \in V(G)$ there is a vertex $w \in W$ such that $d(u,w) \neq d(v,w)$. A resolving set containing a minimum number of vertices is called a minimum resolving set or a basis for G. The cardinality of a minimum resolving set is called the dimension of G and is denoted by $\dim(G)$. A resolving set W is said to be a one size resolving set if the size of the subgraph induced by W is one, and a onefactor resolving set if W induces isolated edges (one regular graph). The minimum cardinality of these sets denoted $\text{or}(G)$ and $\text{onef}(G)$ are called one size and one factor resolving numbers respectively. In this paper we investigate these resolving parameters for enhanced hypercube networks.
Conditional Resolving Parameters on Enhanced Hypercube Networks

References

- S. Kwancharone, V. Saenpholphat, C. M. Da Fonseca, One size resolvability of graphs, Publicações do Departamento de Matemática, Universidade de Coimbra, (Preprint).
- B. Rajan, I. Rajasingh, P. Venugopal, M. Chris Monica, Minimum Metric Dimension of Illiac Networks, Ars Combin. , (Accepted).
Conditional Resolving Parameters on Enhanced Hypercube Networks

Index Terms

Computer Science Applied Mathematics

Keywords

Resolving Set Basis One Size Resolving Set One Factor Resolving Set Enhanced Hypercube Networks