Abstract

Mobile Ad hoc Networks are infrastructure less networks. Nodes themselves do routing and forwarding functions. Topology changes due to node movement. Frequent changes in topology leads to more route breaks. This in turn leads to reduction in Packet delivery Ratio (PDR). It is desired that routing protocols should select stable paths i.e. which are less likely to break. In this work, we have implemented one such protocol. Different mobility patterns lead to different performance of routing protocols. We have evaluated stable routing protocol under following mobility models: Random WayPoint, Manhattan Model, Reference Point Group Mobility and Gauss Markov Model. Performance measures of interest are Packet Delivery Ratio (PDR) and routing overhead. It is found that RPGM results in better PDR and lowest routing overhead compared to other models. Manhattan model results in lowest PDR and highest routing overhead.

References

Index Terms

Computer Science Wireless

Keywords

Mobile Ad-hoc Network Topology Aodv