Abstract

In this paper, I-PD controller is designed and controller parameters are optimized using particle swarm intelligence for a First Order Lag Integrating plus Time Delayed model (FOLIPD). One of the modifications of PID controller is I-PD controller, which can be used for eliminating the proportional and derivative kick occurs during set point change. The controller parameters play the major role in obtaining the desired performance of a process and that urges the importance of selecting the most suitable parameters. The simulation results show that particle swarm optimized I-PD controller gives better performance compared to traditional Ziegler Nichols tuning technique and tuning method proposed by Arvanitis.

References

Optimization of I-PD Controller for a FOLIPD Model using Particle Swarm Intelligence

- Kiam Heong Ang, Gregory Chong and Yun Li (2005), "PID Control System Analysis, Design, and Technology", IEEE Transactions on control systems technology, vol. 13, no. 4.
- Aidan O'Dwyer, 2006, "Handbook of PI and PID Controller Tuning Rules", (2nd Edition), Published by ICP.
- Wen-wen Cai, Li-xin Jia, Yan-bin Zhang, Nan Ni, 2010, "Design and Simulation of Intelligent PID Controller Based on Particle Swarm Optimization", IEEE conferences.

Index Terms

Computer Science Control Systems

Keywords

I-pd Controller Folipd Model Pso (particle Swarm Optimization) Settling Time Rise Time
Peak Overshoot