Abstract

The occurrence of deadlocks should be controlled effectively by their detection and resolution, but may sometimes lead to a serious system failure. After implying an efficient detection algorithm the deadlock is resolved by a deadlock resolution algorithm whose primary step is to either select the victim then to abort the victim transaction or cause it to rollback. This step resolves deadlock but is not efficient one. This paper proposes a new deadlock resolution algorithm which doesn’t cause any aborts / roll backs in fact it is based on the mutual cooperation of transactions and a random number representing time duration for which the process holding the resource will be suspended.

References

- A. Boukerche and C. Tropper. A distributed graph algorithm for the detection of local cycles and knots.
- Soojung Lee. Fast Detection and Resolution of Generalized Distributed Deadlocks,
- J. R. Villadangos de Mendivil, J. R. Garitagoitia, C. F. Alastruey, and J. M.

Index Terms

Computer Science Parallel Processing

Keywords

Deadlock Wfg Transactions Resources