Abstract

In this paper, we develop a supply network model for a service facility system with perishable inventory (on hand) by considering a two dimensional stochastic process of the form \((L, X) = \), where \(L(t)\) is the level of the on hand inventory and \(X(t)\) is the number of customers at time \(t\). The inter-arrival time to the service station is assumed to be exponentially distributed with mean \(1/\lambda\). The service time for each customer is exponentially distributed with mean \(1/\mu\). The maximum inventory level is \(S\) and the maximum capacity of the waiting space is \(N\). The replenishment process is assumed to be \((S-1, S)\) with a replenishment of only one unit at any level of the inventory. Lead time is exponentially distributed with parameter \(\beta\). The items are replenished at a rate of \(\delta\) whose mean replenishment time is \(1/\delta\). Item in inventory is perishable when its utility drops to zero or the inventory item become worthless while in storage. Perishable of any item occurs at a rate of \(\gamma\). Once entered a queue, the customer may choose to leave the queue at a rate of \(\delta\) if they have not been served after a certain time (reneging). The steady state probability distributions for the system states are obtained. A numerical example is provided to illustrate the method described in the model.

References

- Berman O. and E. Kim, Dynamic inventory strategies for profit maximization in a service
Markov Process for Service Facility systems with perishable inventory and analysis of a single server queue

- Berman O. and K. P. Sapna, Optimal service rates of a service facility with perishable inventory items, Naval Res Logist, 49 (2002), 464–482.
- Berman, O. Kim, E. (1999), Stochastic inventory policies for inventory management at service facilities, Stochastic Models, 15, 695 -718.
- Schwarz. M. and H. Daduna, Queuing systems with inventory management with
random lead times and with backordering, Math Meth Oper Res, 64 (2006), 383–414.

Index Terms

Computer Science

Keywords

Markov Process Service Facility System Stochastic Model Inventory Control
Queue-inventory Model
Equilibrium Distribution