Photonic crystal fibres – micro structured fibre consisting of air hole arrays running along its length – have attracted much attention for fibre device application because of its unusual optical properties that are not realized in standard optical fibre, such as high birefringence, high nonlinearity, low confinement loss and tailorable chromatic dispersion. High birefringent PCF can be designed by breaking the circular symmetry and implementing asymmetric defect structures such as dissimilar air hole diameter, varying the number of circular and elliptical air holes. This paper proposes a highly birefringent PCF with ultra-low confinement loss by introducing four ring solid core hexagonal structure which having both elliptical and circular air holes and introducing large air hole diameters near the core region for making the asymmetry. The modal birefringence, refractive indices, confinement loss and chromatic dispersion are calculated by using Finite element method (FEM). An endlessly single mode, high birefringent (05. 152x10^-3) and a low confinement loss (7. 85x10^-5 dB/km) found at the excitation wavelength of ?=1550nm with only four rings of air holes in the fiber cladding.

References

- Ritu Sharma, Vijay Janyani, Anuradha Sharma, Design of Elliptical Air Hole PCF with Hybrid Square Lattice for High Birefringence and a Lower Zero Dispersion Wavelength

- Kuang-Yu Yang, Yuan-Fong Chau, Yao-Wei Huang, Hsiao-Yu Yeh, and Din Ping Tsai, Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding, JOURNAL OF APPLIED PHYSICS 109, 093103 (2011)


- Peng Song, Yanrong Tong, Xinlian Chen, A Novel High Birefringence Photonic Crystal Fibre with Squeezed Elliptical Holes, 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI 2010).


Index Terms

- Computer Science
- Photonic Crystal Fibres,
- Birefringence, Confinement Loss, Finite-element Method (fem)
Keywords
Data Communications