Abstract

The recognition of objects is one of the main goals for computer vision research. This paper formulates and solves the problem of three-dimensional (3D) object recognition for Polyhedral objects. A multiple view of 2D intensity images are taken from multiple cameras and used to model the 3D objects. The proposed methodology is based on extracting set of features from the 2D images which include the Affine, Zernike and Hu moments invariants to be used as inputs to train artificial neural network (ANN). Various architectures of ANN were explored to recognize a shape of Polyhedral objects. The experiments results show that 3D objects can be sufficiently modeled and recognized by set of multiple 2D views. The best ANN architecture was twenty input and single output model.

References

- Sharath, P., Chitra, D., and Anil, K., R., 1993, Feature Detection for 3D Object
Recognition and Matching, In Proceedings, of SPIE Conference on Geometric Methods In
- Murase, H., and S. K. Nayar, "Visual Learning and Recognition of 3-D Objects
Appearance-Based 3D Object Recognition", Computer Vision and Image Understanding
- Sheta, A., Baareh, A., and Al-Batah, M., "3D Object Recognition Using Fuzzy
Mathematical Modeling of 2D Images", Accepted for publication at the 3rd International
- Braik, M., Sheta, A., "A New Approach for Potentially Breast Cancer Detection
Using Extracted Features and Artificial Neural Networks", Journal of Intelligent Computing
- Baareh, A. K., Sheta, A., Al Khnaifes K., "Forecasting River Flow in the USA: A
Comparison between Auto-Regression and Neural Network Non-Parametric Models",
- Al-Batah, M. S., Mat Isa, N. A., Zamli, K. Z., and Azizli, K. A, Modified Recursive
Least Squares algorithm to train the Hybrid Multilayered Perceptron (HMLP) network, Applied
- Seethe, M., Muralikrishna, I. V., Deekshatulu, B. L., Artificial Neural Networks and
Other Methods of Image Classifications, Journal of theoretical and applied information
- Honjun Lu., Rudy S., huan lui., 1996, Effective data mining Using Neural Networks,
IEEE Transactions On Knowledge and Data Engineering, Vol. 8, No. 6., pp. 957-961.
- Radha, V., Nallammal., N, October 19-21, 2011, "Neural Network Based Face
Recognition Using RBFN Classifier", In Proceedings of the World Congress on
Engineering and Computer Science, Vol. I, San Francisco, USA.
- Darwis, Y. and, Sheta, A., 2008, "Minutiae Extraction for Fingerprint
Recognition", In Proceedings of the Fifth IEEE International Multi-Conference on System,
Signal and Devices (SSD&apos;08), Amman, Jordan.
- Baareh, A., Sheta, A, AL Khnaifes K. 2006, "Forecasting river flow in the USA: a
comparison between auto-regression and neural network non-parametric models",
SMO&apos;06 Proceedings of the 6th WSEAS International Conference on Simulation,
Modeling and Optimization, pp. 7-12.
Education Limited.
- Mat Isa., Zamli, K. Z., and Al-Batah, M. S., "Automated intelligent real-time
100, No. 1-2, pp. 41 – 50, 2011.
Light Line Pattern by Hu Moments for 3-D Reconstruction of a Rotated Object",
- Realpe, A., and Velazquez, C, "Pattern Recognition for Characterization of
Feature based 3D Object Recognition using Artificial Neural Networks

Index Terms

Computer Science Artificial Intelligence

Keywords

3d Object Recognition Moments Features Extraction Classifications Back Propagation