In this paper Enhanced Maximum Urgency First (EMUF) scheduling algorithm with intelligent laxity has been proposed. This algorithm is a further improvement in MMUF algorithm [1] and is a mixed priority scheduling algorithm which combines the advantages of both fixed and dynamic scheduling for better CPU utilization and throughput. The prime objective of this paper is to improve modified maximum urgency first scheduling (MMUF) using intelligent laxity as the dynamic priority. EMUF algorithm is mainly suited for real time systems where meeting of deadlines is an important criterion for scheduling. This proposed algorithm improves the Modified Maximum Urgency First scheduling algorithm for real time tasks proposed by V. Salmani et. al [1] and the experimental analysis shows that the proposed algorithm (EMUF algorithm) performs better than MMUF [1] and MUF[6] scheduling algorithm by minimizing average turnaround time, average waiting time and maximizing the throughput.

References

- V. Salmani, S. zargar and M. Naghibzadeh- a modified maximum urgency
first scheduling algorithm for real time tasks- world academy of science and technology 9 2005

- D. B. Stewart, and P. K. Khosla, "Real Time Scheduling Of Dynamically Reconfigurable Systems," in proc. IEEE International Conference on Systems Engineering, Dayton Ohio, August 1991, pp. 139-142
- J. Goossens, and P. Richard, "Overview of real-time scheduling problems" in Proc. the ninth international workshop on project management and scheduling, Nancy, France, April 2004.
- Yaashuwanth. C IEEE Member, Dr. R. Rames Department of Electrical and Electronics Engineering, Anna University Chennai, "Design of Real Time scheduler simulator and Development of Modified Round Robin architecture"
- J. Goossens, Université Libre de Bruxelles and P. Richard, Laboratoire d'Informatique Scientifique et Industrielle ENSMA (France), "Overview of real-time scheduling problems"

Index Terms

Computer Science

Algorithms

Keywords

Context Switches Intelligent Laxity Laxity Process Real Time System Real Time System Scheduling
Turnaround Time
Throughput
Waiting Time