Abstract

Thyroid gland secretes thyroid hormones to control the body’s metabolic rate. The malfunction of thyroid hormone will lead to thyroid disorders. The under-activity and over-activity of thyroid hormone causes hypothyroidism and hyperthyroidism. This paper describes the diagnosis of thyroid disorders using decision tree attribute splitting rules. Since, decision tree attempts to follow one decision, it helps to classify the data in dataset according to aforesaid disorders. This method provides five different splitting criteria for the construction of decision tree. The splitting criteria are Information Gain, Gain Ratio, Gini Index, Likelihood Ratio Chi-Squared Statistics, Distance Measure. Among, the aforementioned splitting rules three rules belong to Impurity based splitting criteria and other two are Normalized Impurity based splitting criteria. As a result, the decision tree classifies the thyroid data-set into three classes of thyroid disorders.

References

com/articles/diseases/tyroid. pdf
- www.wikipedia.org/thyroid
- Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques. Published by Elsevier 2006.
- Fatemeh Saiti and Mahdi Aliyari, Thyroid Disease Diagnosis based on Genetic algorithms using PNN and SVM. In Proceedings of IEEE 2009.
- Lior Rokach and Oded Maimon, Decision Trees. Tel-Aviv University, pages 165-192.

Index Terms
Computer Science Artificial Intelligence

Keywords
Thyroid Disorders Decision Trees Information Gain Gain Ratio Gini Index Likelihood Ratio Chi-squared Statistics Distance Measure