An Algorithm to Count onto Functions

Abstract

This paper proposes an algorithm to derive a general formula to count the total number of onto functions feasible from a set A with cardinality n to a set B with cardinality m. Let \(f: A \rightarrow B \) is a function such that \(|A| = n \) and \(|B| = m \), where A and B are finite and non-empty sets, \(n \) and \(m \) are finite integer values. To count the total number of onto functions feasible till now we have to design all of the feasible mappings in an onto manner, this paper will help in counting the same without designing all possible mappings and will provide the direct count on onto functions using the formula derived in it.

References

- Rinku Kumar, Rakesh Kamboj, Chetan Pahwa Functions Feasibility Analysis: Based on Cardinality of Sets; volume 2, issue 3(Jan. 2012), IJARCSSE.
- L. Gerstein, Discrete Mathematics and Algebraic Structures, New York: Freeman and
Index Terms

Computer Science Algorithms

Keywords

Function Onto Cardinality Mappings Transformations Stirling Number