Abstract

To identify a set of earthquake precursors for predicting earthquakes in different tectonic environments, a series of geo-scientific tools and methodologies based on rigorous assessment of multi-parameters have been developed by different researchers without complete success in earthquake prediction. The aim of earthquake forecasting involve multi-components analysis in implementing probabilistic forecasts that resolves decision-making in a low-probability environment. The proposed work analytically examined some of the modern seismological earthquake algorithms used for analyzing seismo-electro-telluric-geodetic data used across the globe. The present study develops a fuzzy inference model by correlating evaluatory parameters by surveying analytical work of the data sets used, numerical experimentation done in analysis and the global application and success rate of 18 of the most viable earthquake prediction algorithms developed by mutually comparing different models in earthquake predictability experiments. Using qualitative analysis in probabilistic information, an efficient trust model has been implemented through fuzzy inferencing rules. Trust validity through information is an aggregation of consensus in earthquake occurrence given a set of past success rate and the methodologies involved in prediction.
References

- Andalib, A., Zare, M. and Atry, F., A fuzzy expert system for earthquake prediction, case study: the zagros range, ICMASO, 2009. Crossref
- Asada, T., Earthquake prediction techniques. – Their application, in Japan, University of Tokyo Press, pp. 317, 1982. CrossRef
- Dmowska, R., Earthquake prediction--state of the art, Pageoph Topical Volumes
- Ebel J. E., Chambers D. W., Kafka, A. L. and Baglivo J. A., Non-Poissonian earthquake clustering and the hidden markov model as bases for earthquake forecasting in California, Seismological Research Letters; v. 78(1); p. 57-65; DOI: 10.1785/gssrl.78.1.57, 2007.
- Kisslinger C., Practical Approaches to Earthquake Prediction and Warning. , Kluwer Academic Pub., Amsterdam, Netherlands, 1986. Crossref
Am. , 92, 570-580, DOI: 10. 1785/0120000223,2002
- Rikitake T. and Yamazaki Y. , Small Earth strains as detected by electrical resistivity
- Rhoades D. A. and Evison F. F. , Long-range earthquake forecasting with every
 earthquake a precursor according to scale, Pure Appl. Geophys. 161(1), 47-72, DOI: 10.
- Rundle J. , Klein W. , Tiampo K. and Donnellan A. , Strategies for the detection and
 analysis of space-time patterns of earthquakes on complex fault systems. In: Proceedings of
 the 2003 international conference on Computational science: Part III.
- Rundle J. B. , Turcotte D. L. and Klein W. , Geocomplexity and the Physics of
 Earthquakes, Geophysical Monograph Vol 120, doi: 10.1029/GM120,American Geophysical
- Rundle A. B. ,Alsburg J. V. , Rundle P. , Turcotte D. and Morein G. , Computing
 earthquake forecast probabilities using numerical simulations of the physics of realistic fault
 systems (Virtual California), Geophysical Research Abstracts, Vol. 10,
- Shimazaki K. and Stuart W. , Earthquake prediction, Birkhäuser Pub. , Basel ; Boston,
 USA,1985. Crossref
- Shih-jung M. , Introduction to earthquake prediction in China, Ti chen chiu pan she Pub. ,
 Pei-ching, China,1993
- Sidorin Y. , Search for earthquake precursors in multidisciplinary data monitoring of
 Crossref
- Sobolev G. A. , Tyupkin Y. S. and Zavialov A. , Map of Expectation Earthquakes
 Algorithm and RTL Prognostic Parameter: Joint Application. The 29th General Assembly of
 IASPEI, Thessaloniki, Greece, Abs:77,1997. Crossref
- Thanassoulas C. and Tselentis G. , Periodic variations in the earth's electric field
 as earthquake precursors: results from recent experiments in Greece. , Tectonophysics
- Varotsos P. , Eftaxias K. , Vallianatos F. and Lazaridou M. , Basic principles for
 evaluating an earthquake prediction method, Geophys. Res. Lett., 23(11), 1295–1298,
- Vogel A. , Itsikara A. M. , Multidisciplinary approach to earthquake prediction:
 International Symposium on Earthquake Prediction in the North Anatolian Fault Zone (1980 :
 Istanbul, Turkey), proceedings of the International Symposium on Earthquake Prediction in
 the North Anatolian Fault Zone, held in Istanbul, March 31-April 5, 1980. , F. Vieweg Pub. ,
 Braunschweig, Germany, 1982.
 Int. Workshop on monitoring Crustal dynamics in earthquake zones, Strasbourg, 29 Aug. – 5
- Vorobieva I. A. and Levshina T. A. , Prediction of a second large earthquake based on
 aftershock sequence. In: Computational Seismology and Geodynamics, 2:27–36. Washington,

- Wyss M., Slater L. and Burford R. O., Decrease in deformation rate as a possible precursor to the next Parkfield earthquake, Nature 345, 428–431, doi:10.1038/34528a0, 1990b.

Index Terms

Computer Science Applied Sciences

Keywords

Precursors algorithms Component Trust Efficiency Prediction