Abstract

This paper proposes a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a first-order controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is verified and compared with the PI controller using the Network Simulator, NS-2.

References

A Particle Swarm Optimization Approach for Optimum Design of First-Order Controllers in TCP/AQM Network Systems

- K. Saadaoui and A. B. Özgüler, "A new method for the computation of all stabilizing controllers of a given order;" International Journal of Control, vol. 78, pp. 14-28, 2005
- S. Kunniyur and R. Srikant, "Analysis and design of an Adaptive Virtual Queue (AVQ) algorithm for Active Queue Management;" Proceedings of ACM SIGCOMM, pp. 123-134, August 2001
- K. Saadaoui, S. Testouri and M. Benrejeb "Robust stabilizing first- order controllers for a class of time delay systems;" ISA Transactions vol. 49, pp. 277-282, 2010.
- R. C. Eberhart and Y. Shi, "Comparison between genetic algorithms and particle
A Particle Swarm Optimization Approach for Optimum Design of First-Order Controllers in TCP/AQM Network Systems

Index Terms

Computer Science

Control Systems

Keywords

Time Delay Tcp/aqm Pso