Abstract

Light extraction efficiency has become first order design constraint for LEDs and its enhancement has always been a challenge for researchers. This affects the life of LEDs as well as optical output and various techniques for its enhancement have been reported. Methods for maximizing the efficiency of LEDs are typically based on enhancement of internal and external quantum efficiency. In our paper, we report efficiency enhancement based comparative study of LEDs which are grown by different techniques. Firstly the techniques dealing with improvement of internal quantum efficiency and secondly the techniques for increasing ratio of photons leaving the LED to those created in active region (enhancement of external quantum efficiency) are reviewed.

References

A Study of Enhancement Techniques for Light Extraction Efficiency of Light Emitting Diodes

- Songbek Che, Akihiko Yuki, Hiroshi Watanabe, Yoshihiro Ishitani and Akihiko Yoshikawa, "Fabrication of Asymmetric GaN/InN/InGaN Quantum-Well Light Emitting Diodes for Reducing the Quantum-Confined Stark Effect in the Blue-Green Region", Applied Physics Express 2 (2009) 021001
- Hirokuni Asamizu, Makota Saito Kenji, Fujito James, S. Speck, Steven P. Denbaars and Shuji Nakamura "Continuous-Wave Operation of InGaN/GaN Laser Diodes on Semipolar (1122) Plane Gallium Nitrides" Applied Physics Express 2 (2009) 021002

Index Terms

Computer Science
Applied Sciences

Keywords
Led Internal Quantum Efficiency External Quantum Efficiency.