CFP last date
22 April 2024
Reseach Article

The Study of Results Simulation of Collective Motion

by Iliass Tarras, Najem Moussa, M’hammed Mazroui, Yahya Boughaleb
International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA
Volume 46 - Number 5
Year of Publication: 2012
Authors: Iliass Tarras, Najem Moussa, M’hammed Mazroui, Yahya Boughaleb
10.5120/6904-9295

Iliass Tarras, Najem Moussa, M’hammed Mazroui, Yahya Boughaleb . The Study of Results Simulation of Collective Motion. International Journal of Computer Applications. 46, 5 ( May 2012), 21-26. DOI=10.5120/6904-9295

@article{ 10.5120/6904-9295,
author = { Iliass Tarras, Najem Moussa, M’hammed Mazroui, Yahya Boughaleb },
title = { The Study of Results Simulation of Collective Motion },
journal = { International Journal of Computer Applications },
issue_date = { May 2012 },
volume = { 46 },
number = { 5 },
month = { May },
year = { 2012 },
issn = { 0975-8887 },
pages = { 21-26 },
numpages = {9},
url = { https://ijcaonline.org/archives/volume46/number5/6904-9295/ },
doi = { 10.5120/6904-9295 },
publisher = {Foundation of Computer Science (FCS), NY, USA},
address = {New York, USA}
}
%0 Journal Article
%1 2024-02-06T20:38:58.437880+05:30
%A Iliass Tarras
%A Najem Moussa
%A M’hammed Mazroui
%A Yahya Boughaleb
%T The Study of Results Simulation of Collective Motion
%J International Journal of Computer Applications
%@ 0975-8887
%V 46
%N 5
%P 21-26
%D 2012
%I Foundation of Computer Science (FCS), NY, USA
Abstract

The collective behavior/motion has always been one of the most fascinating phenomena since men started to observe nature which remains a real natural phenomenon, were it is typical in our social environment. The study of collective behavior on a large scale also enables us to better understand different approaches to study in the small scale. In this study, we discuss the principal effect of the control parameters: The binder cumulant, density and the size of system with three zones repulsion, orientation and attraction on the collective motion in the 2D. Furthermore a simple model with a novel type of dynamics is introduced in order to investigate the emergence of self-ordered motion in system of particles. In our simulation, the particles equivalent to agents interact with their neighbors by choosing at each time step a velocity depending on their direction. The aim of this article is to extend the model proposed earlier by Viscek et al. Numerical simulations showed that depending on the control parameters both disordered and long-range ordered phases can be observed and the corresponding phase space domains are separated by singular critical lines.

References
  1. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett, Vol 75, 1226 (1995).
  2. I. D. Couzin, J. Krause, R. James, G. D. Ruxton and N. R. Franks, Collective memory and spatial sorting in animal groups, J. theor. Biol, 218, 1 (2002).
  3. N. Moussa, I. Tarras, M. Mazroui and Y. Boughaleb, Effects of agent's repulsion in 2d flocking models IJMPC, Vol 22, 661 (2011).
  4. I. D. Couzin, J. Krause, N. R. Franks and A. Simon Levin, Effective leadership and decision making in animal groups on the move, Nature, 433,513 (2005).
  5. H. Chaté, F. Ginelli, G. Grégoire, F. Peruani and F. Raynaud, Modeling collective motion: variations on the Vicsek model, Eur, Phy J. B, 64, 451 (2008).
  6. G. Grégoire and H. Chaté, Onset of collective and cohesive motion, Phys. Rev. Lett, Vol 92, 025702 (2004).
  7. D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical features of escape panic, Letters to Nature, 407, 487(2000).
  8. A. Czirók, A. B. Barabási, and T. Vicsek, Collective motion of self-propelled particles: kinetic phase transition in one dimension, phy. Rev. Lett Vol 82, (1999).
  9. A. Czirok, M. Vicsek and T. Vicsek, Collective motion of organisms in three dimensions, Physica A, Vol 264, 299 (1999).
  10. A. Czirok, H. E. Stanley and T. Vicsek, Spontaneously ordered motion of self-propelled particles, J Phys A, Gen, Vol 30, 1375(1997).
  11. M. Aldana, H. Larralde, B. Vázquez, on the emergence of collective order in swarming systems: a recent debate, IJMPB, Vol 23, 3685 (2009).
  12. G. Baglietto, Ezequiel V. Albano, Computer simulations of the collective displacement of self-propelled agents, Computer Physics Communications, Vol 180, 531 (2009).
  13. G. Baglietto, Ezequiel V. Albano, Finite-size scaling analysis and dynamic study of the critical behavior of a model for the collective displacement of self-driven individuals, Phys Rev E, Vol 78, 021125 (2008).
  14. C. A. Yates, R. E. Baker, R. Erban, P. K. Maini, Refining self-propelled particle models for collective behavior, Canadian Applied Mathematics Quarterly, No 94/6, (2011).
  15. A. Czirok and T. Vicsek, Collective behavior of interacting self-propelled particles, Physica A, Vol 281, 29 (2000).
  16. H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys Rev E, Vol 77, 046113(2008).
  17. M. Nagy, I. Daruka, T. Vicsek, Physica A, Vol 373,454(2007).
  18. K. Binder, Rep Prog Phys, Vol 60, 559(1997).
Index Terms

Computer Science
Information Sciences

Keywords

Collective Motion Noise Density Size Of System Binder Cumulant And Kinetic Phase Transition