Abstract

WSN are distributed networks with small, light weight wireless sensor nodes. These sensor nodes cooperatively monitor the environment to measure the physical parameter such as temperature, pressure etc. It is data centric. When sensor nodes detect an event, it become active in collecting and transmitting the data, which cause congestion and results in packet drops, decrease in throughput and retransmission of data. To ensure the application's reliability requirements and to reduce the load on the network, WSN need proficient congestion control policies. With this aim, this paper evaluates a contextual cooperative congestion control policy that makes use of the environment information of each node to reduce the channel load, by satisfying the applications requirements. This paper proposes a selective data forwarding scheme to avoid congestion and to optimize the energy drain. The SDFS scheme depends on parameters such as available energy and precedence of the data at the node. This scheme collects data from other sensors of this context.
- Fengyuan Ren, Member, IEEE, Tao He, Sajal K. Das, Senior Member, IEEE, and Chuang Lin, Senior Member, IEEE; Traffic-Aware Dynamic Routing to Alleviate Congestion in Wireless Sensor Networks; IEEE Transactions on Parallel and Distributed Systems, Vol. 22, No. 9, September 2011.
- Rekha Chakravarthi, Department of Electronic Sciences, Sathyabama University, Chennai, India, C. Gomathy, Department of Electronics and Control, Sathyabama University, Chennai, India; IPD: Intelligent Packet Dropping Algorithm forCongestion Control in Wireless Sensor Network; ICISA, 2010 International Conference on April 2010.
- Rocío Arroyo-Valles, Antonio G. Marques, and Jesus Cid-Sueiro; Energy-efficient Selective Forwarding for Sensor Networks.
An Energy Efficient Congestion control Technique for Wireless Sensor Networks

Index Terms

Computer Science Wireless

Keywords

Wireless Sensor Network Congestion Control Contextual Cooperative Mode Selective Data Forwarding Scheme