Abstract

The research proposes a planning scenario of critical success factors (CSFs) for enterprise systems (ES) of Smart aircraft factory. Application of knowledge discovery and classification algorithms is applied to draw probabilistic inferences based on FP-Growth-algorithm blended with a novel approach based on balanced scorecard (BSC) architecture.

References

- European-Union-EFRA, FACTORIES OF THE FUTURE PPP STRATEGIC MULTI-ANNUAL ROADMAP, in 2010: Belgium.
Predicting, Prioritizing & Planning Enterprise System’s CSFs for Smart Factory: A Balanced Scorecard FFPG-Data-Mining Scenario Approach

- Adiano, C. and A. V. Roth, &quot;Beyond the house of quality: dynamic QFD&quot;.
- Canadian Public Library, Canadian Aerospace Cluster, DOD, Editor. 2004, Québec, Canadian Public Library. p. 7 -23 & 42.
- 24. Richard B Chase, et al., Operations Management for Competitive advantage (TQM,
Predicting, Prioritizing & Planning Enterprise System’s CSFs for Smart Factory: A Balanced Scorecard FPG-Data-Mining Scenario Approach


- PROPENKO, J. and K. NORTH, Productivity & Quality management. 1996: ILO.

Index Terms

Computer Science

Information Systems
Keywords
Enterprise Systems  Es /erp  Critical Success Factors  Smart Aircraft Factory  Fpg  
(conditional Probability)

Bsc

Doi.