Abstract

Energy and efficiency are always the main concern in wireless sensor network. In a sensor network the nodes are present with limited energy and with each transmission they loss some energy. Because of this it is required to minimize the rerouting to save the energy loss. Our work is defined in same area. We proposed an algorithm to get the efficiency as well as the reliability. In this work an energy efficient maximally covered sensor network algorithm is presented such that addresses the requirements of power efficient infrastructure issues for WSN. In this work we proposed a bio inspired dynamic route identification approach in case of any broken link or intrusion in the path. The system will look for the compromising path to optimize the throughput.

References

- João Pedro, "Distributed Routing Path Optimization for OBS Networks based on Ant Colony Optimization," IEEE GLOBECOM; 2009
A Bio Inspired Energy Efficient Routing Approach to Resolve Broken Link Problem in WSN

978-1-4244-4148-8/09©2009
- Maumita Bandyopadhyay, "Zone Based Ant Colony Routing In Mobile Ad-hoc Network";, 978-1-4244-5489-1/10© 2010 IEEE
- Afshin Ghanizadeh, "A Fuzzy-Particle Swarm Optimization Based Algorithm for Solving Shortest Path Problem";, 978-1-4244-6349-7/10@ 2010 IEEE
- Yanfang Deng, "Dynamic Shortest Path in Stochastic Traffic Networks Based on Fluid Neural Network and Particle Swarm Optimization";, 2010 Sixth International Conference on Natural Computation (ICNC 2010) 978-1-4244-5961-2/10©2010 IEEE
- Michael Rinehart, "The Value of Side Information in Shortest Path Optimization";, IEEE TRANSACTIONS ON AUTOMATIC CONTROL 0018-9286© 2011 IEEE
- Marina Yusoff, "A Discrete Particle Swarm Optimization with Random Selection Solution for the Shortest Path Problem";, 978-1-4244-7896-5/10@ 2010 IEEE
- Je´rome Barclay, "Multiple Object Tracking Using K-Shortest Paths Optimization";, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 0162-8828/11@ 2011 IEEE

Index Terms
Keywords
Wsn Energy Optimization Bio Inspired Ant Optimization Approach Lifetime Research Methodology