Abstract

Now days it is very tedious job to keep files for personal as well as commercial computing. There are various type of compressing technique used, but one step ahead from them available technique is described here. Almost every application the backend used is database. That why my technique is dedicated to this type of databases. In this proposed technique we consider every type of compression, but when comes to date and time based database, not much compression technique deals with it. For text type compression there are many techniques same for images. But here we are proposing mainly for time and date type data bases. The practical use for this compression may useful for LIC policies, Stock Exchange, Railways Reservations databases etc. It may also useful for Employees working in a firm, maintaining daily database for salary purposes like Time in and Time out. For this type of database the proposed technique will give a big amount of compressions than any other type of techniques. We have techniques regarding database compression are character, memo, number, date, time compression which can work for individual fields in a database. In this paper main concentration has been given for time compressions. We suggested one example in tabular form on that our differential and time method has been applied.
References

- Pujari. A. K "Data Mining Technique"; (University Press).
- Holger Kruse, Amar Mukherjee, "Data Compression Using Text Encryption"; FL 32816 Page No. 1068-0314/97 Years 1997 IEEE Department of Computer Science University of Central Florida Orlando, 32816.
- Ming-Bo Lin, Member and Yung-Yi Chang, "A New Architecture of a Two-Stage Lossless Data Compression and Decompression Algorithm"; IEEE TRANSACTIONS ON VERY LARGE SCALEINTEGRATION (VLSI) SYSTEMS, VOL, 17, NO, 9, SEPTEMBER 2009 1063-8210 Years 2009 IEEE.
- "apos;N. Magotraapos;, W. McCoyapos;, S. Stearnsapos; Dept. of EECE, "apos;A Lossless Data Compression In Real Time F. Livingston. "apos; University of New Mexico, Albuquerque, NM 87131: Dept, 9311, Sandia National Laboratory, Albuquerque, NM 87185 1058-6393/95 year 1995 IEEE.
- Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas, "ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency"; Foundation for Research and Technology – Hellas (FORTH), P. O. Box 2208, Heraklion, GR 71409, Greece, 978-07695-2/10, © 2010 IEEE.
- Ming-Bo Lin, Member, IEEE, and Yung-Yi Chang, "A New Architecture of a Two-Stage Lossless Data Compression and Decompression Algorithm"; 1063-8210, ©2009 IEEE.
- Tanakorn Wichaiwong, Kitti Koonsanit, Chuleerat Jaruskulchai, "A Simple Approach to Optimized Text Compression&apos;s Performance" 4th International Conference on Web Services Practices, IEEE Computer Society, 978-0-7695-3455-8/08, Page no. 66 – 70.
- M. Baritha Begum, Dr. Y. Venkataramani, "An Efficient Text Compression for Massive Volume of Data" IJCA (0975 - 8887), Volume 21 – No. 5, May 2011, page No. 5 – 9.
- S. R. Kodituwakku, U. S. Amarasinghe, "Comparison of Lossless Data Compression Algorithms for Text Data" IJCSE Vol. 1 No. 4 416-425, ISSN : 0976-5166, Page No. 416-4125.
- Umesh S. Bhadade, Prof. A. I. Trivedi, "Lossless Text Compression using Dictionaries" IJCA (0975 - 8887) Volume 13- No. 8, January 2011, Page No. 27-34.

Index Terms

Computer Science

Information Sciences

Keywords

Compression Compression Ratio Compression Factor Fixed Length Coding (flc)
Huffman After Using Fixed Length Code (hflc)
Lzw(lampel Ziv Welch)
Lossy Compression
Nonlossy Compression
Rle (run Length Encoding)
Saving Percentage
Temporal Database