Abstract

The Iris pattern of any animal (including human being) is statistically unique and suitable for biometric measurements. The identity of the animal concerned can be determined and verified comparing the templates obtained with the present algorithm with that template stored in database which was formed on the basis of previous studies. In the present study, the method of circular Hough transform is used for segmentation of the tiger Iris and subsequently Daugman's rubber Sheet model is used for normalization of the segmented values. Pattern matching is achieved by calculating Hamming Distance where its degree is proportional to the closeness of matching. The closer matching between the stored and calculated pattern is found to lead towards better recognition of Irises and thereby the animal itself.

References

Identification of Tigers for Census by the Method of Tiger Iris Pattern Matching and Recognition

Libor Masek, "Recognition of Human Iris Patterns for Biometric Identification", School of Computer Science and Soft Engineering, the University of Western Australia, 2003.

Z. Sun, T. Tan, and X. Qiu, Graph matching iris image blocks with local binary

Index Terms

Computer Science

Pattern Recognition

Keywords

Iris recognition Pattern matching biometric identification