Abstract

Distance based localization techniques have always been of interest among researchers. The free received signal strength index (RSSI) requires no extra hardware for distance measurement. Authors in this paper assume that RSSI based distance estimation technique will have some error due to noisy RSSI readings. The localization algorithm proposed here takes into account this error and localizes a WSN in three stages. Due to this error in distance, nodes in neighbor of three anchor nodes determine their uncertainty region with some accuracy and become virtual anchors. These nodes then help other nodes in the network to determine their region. These non virtual anchor nodes collaborate among themselves to further decrease the size of uncertainty region. The collaborative nature of nodes is exploited to increase the accuracy and precision of localization. The authors in this paper have used only three anchor nodes to localize a full blown Wireless Sensor Network (WSN) of 100 nodes with better accuracy compared to existing techniques using RSSI till date. Authors also analyze the energy and communication cost involved in localization process.
References

- N. Bulusu, J. Heidemann, and D. Estrin, "GPS-Less Low Cost Outdoor
- B. Xiao, L. Chen, Q. Xiao, and M. Li, Reliable anchor-based sensor localization
 in irregular areas, accepted in IEEE TMC, 2009.
- C. Savarese, J. Rabaey, and K. Langendoen, "Robust Positioning Algorithm for
 317-327, June 2002.
- S. Lanzisera, K. Pister, RF Ranging Methods and Performance Limits for Sensor
 Localization, in Localization Algorithms and Strategies for Wireless Sensor Networks:
 Monitoring and Surveillance Techniques for Target Tracking. G. Mao, B. Fidan, IGI Global,
 2009.
- Zhang Jianwu, Zhang Lu, Research on distance measurement based on RSSI of
 ZigBee, CCCM 2009. ISECS International Colloquium on , vol. 3, no. , pp. 210-212, 8-9
- M. L. Sichitiu, V. Ramadurai, and P. Peddabachagari, Simple Algorithm for
 Outdoor Localization of Wireless Sensor Networks with Inaccurate Range
 300-305.
- A. A. Kannan, B. Fidan, and G. Mao, Analysis of Flip Ambiguities for Robust

Index Terms

Computer Science Wireless

Keywords

RSSI WSN localization Virtual Anchors Less Communication Low power
Localization