Abstract

Automated vision inspection has become a vital part of the quality monitoring process. This paper compares the development and performance of two methodologies for a machine vision inspection system online for high speed conveyor. The first method developed is the Thresholding technique image processing algorithms and the second method is based on the edge detection. A case study was conducted to benchmark these two methods. Special effort has been put in the design of the defect detection algorithms to reach two main objectives: accurate feature extraction and on-line capabilities, both considering robustness and low processing time. An on-line implementation to inspect bottles is reported using new communication technique with GigE Vision camera and industrial Gigabit Ethernet network. The system is validated on olive oil bed. The implementation of our algorithm results in an effective real-time object tracking. The validity of the approach is illustrated by the presentation of experiment results obtained using the methods described in this paper.
- Digital Gigabit Ethernet Area-Scan Camera, Version 1.6, SVSVISTEC, http://www.jm-vistec.com
- K. J Pithadiya, C. K Modi and J. D Chauhan, "Comparison of optimal edge detection algorithms for liquid level inspection in bottles", Second International Conference on Emerging Trends in Engineering and Technology, ICETET-09
- "Digital Gigabit Ethernet Area-Scan Camera", Version 1. 6, SVSVISTEC, http://www. jm-vistec. com
- Ajay Kumar, "Vision-based Fabric Defect Detection: A Survey", Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.

Index Terms

Computer Science
Vision
Keywords

GigE vision camera Image processing Quality Monitoring Defects detection