Abstract

Shafts used in the high lift system (wings of a plane) of an aircraft undergo extreme load conditions during takeoff and landing. Performance of shaft deteriorates along the life span of it. The failure of shaft can lead to a major catastrophe. Therefore, to ensure the safety of passengers, there is a need to develop a test system which can subject different shafts to various loads to which they are designed for and test them for their life cycle. This paper presents implementation of a test system built using LabVIEW – Field Programmable Gate Array (FPGA) which is able to simulate different load conditions on shaft. The real time data of torque and speed values are recorded using FPGA card. Software design of test system and results obtained for a test shaft are discussed in this paper.
LabVIEW FPGA based Software Implementation for an Automated Test System of Shafts used in High Lift

References

- Chaturi Singh and K. Poddar, "Implementation of a VI-Based Multi-Axis Motion Control System for Automated Test and Measurement Applications"; National Wind Tunnel Facility, IIT Kanpur.
- Russ Turley, Matthew Wright, "Developing Engine Test Software in LabVIEW"; 1997 IEEE.
- Y. Han, R. Tzoneva and S. Behardien; "MATLAB, LabVIEW and FPGA linear control of an Inverted Pendulum"; 2007 IEEE.
- Shen Wei-guo. Lian Yu, Zhen Hong-kang, "A Test System of Roving Flyer Based on LabVIEW"; 2011 IEEE.
- Beitao Guo and Jianwei Zhang, Xin Niew, "Application of LabVIEW for Hydraulic Automatic Test System"; 2009 IEEE.
- Richard McDonell and Robert bracket, "Designing an open test software architecture featuring Lockheed Martin LM-Star Case Study"; 2004 IEEE.

Index Terms

Computer Science

Mechatronics

Keywords

LabVIEW Virtual Instrumentation FPGA Test System/Equipment Automated Test System