Abstract

No learner is generally better than another learner. If a learner performs better than another learner on some learning situations, then the first learner usually performs worse than the second learner on other situations. In other words, no single learning algorithm can perform well and uniformly outperform other algorithms over all learning or data mining tasks. There is an increasing number of algorithms and practices that can be used for the very same application. With the explosion of available learning algorithms, a method for helping user selecting the most appropriate algorithm or combination of algorithms to solve a problem is becoming increasingly important. In this paper we are using meta-learning to relate the performance of machine learning algorithms on the different datasets. The paper concludes by proposing the system which can learn dynamically as per the given data.

References

- Dietterich, T. 2002 Ensemble Methods in Machine Learning 1st Int. Workshop on
- Schaffer, C. J. 1993 Selecting a Classification Methods by Cross Validation, Machine Learning, 13, 135-143.
- Koliastasis, D. and Despotis, D. J. 2004 Rules for Comparing Predictive Data Mining Algorithms by Error Rate, OPSEARCH, VOL. 41, No. 3.
- Alexandros, K. and Melanie, H. J. 2001 Model Selection

Index Terms

Computer Science
Artificial Intelligence
Keywords
Learning algorithms Dataset characteristics algorithm selection