Extensive Study on Coverage and Network Lifetime Issues in Wireless Sensor Network

Volume 52 - Number 8

Year of Publication: 2012

Authors:
Deepak S. Sakkari
T. G. Basavaraju

10.5120/8225-1663

Abstract

Wireless sensor networks have a broad variation of applications within the surveillance, military, atmosphere monitoring and medical fields. Coverage and connectivity of sensor networks demonstrates how well a region is monitored. The coverage issues have been studied extensively. Particularly the coverage with respect to connectivity and network lifetime effectiveness is emphasized. Constructing a connected, absolutely encapsulated and energy efficient sensor network is efficacious for real time applications attributable to the restricted resources of sensor nodes. This extensive study highlights the recent research analysis and their respective approaches on coverage of wireless sensor networks. A comprehensive comparison among these approaches are given from the perspective of style objectives, assumptions, algorithm attributes and connected results.

References

- M. Cardei and J. Wu. Energy-efficient coverage problems in wireless ad hoc sensor
- J. Levendovszky, A. Bojárszky, B. Karlóca, A. Oláh, Energy balancing by combinatorial optimization for wireless sensor Networks, WSEAS transactions on communications, ISSN: 1109-2742, Issue 2, Volume 7, February 2008
- Flavio Fabbri and Chiara Buratti, Throughput Analysis of Wireless Sensor Networks via Evaluation of Connectivity and MAC performance, Emerging Communications for Wireless
Extensive Study on Coverage and Network Lifetime Issues in Wireless Sensor Network

Sensor Networks, 2010
- Manh Thuong Quan Dao1, Ngoc Duy Nguyen1, Vyacheslav Zalyubovskiy2, and Hyunseung Choo1, An Energy-efficient Coverage Pattern of WSNs for High Rate Data Transmissions, Retrieved from http://world-comp.org/p2011/ICW8239.pdf
- Sungsoon Cho and John P. Hayes (2005) &quot;Impact of Mobility on Connection Stability in ad hoc networks&quot; Wireless Communications and Networking Conference, 2005 IEEE.
- Rong Yu, Zhi Sun, and Shunliang Mei (2007) "Scalable Topology and Energy
  Management in Wireless Sensor Networks"; Wireless Communications and Networking
  coordination algorithm for topology maintenance in ad hoc wireless networks"; ACM/IEEE
- S. Slijepcevic, M. Potkonjak, Power efficient organization of wireless sensor networks,
  472–476
- C. C. Lai, C. K. Ting, R. S. Ko, An effective genetic algorithm to improve wireless
  sensor network lifetime for large-scale surveillance applications, in: Proceedings of the 2007
  Congress on Evolutionary Computation, 2007, pp. 3531–3538
- Damien Jourdan, "Node placement for a wireless sensor network using a multi
  objective genetic algorithm.
- Zhang. B. S. Lee, X. S. Wang, Aggregation in sensor networks with a user-provided
  quality of service goal, Information Sciences 178 (9) (2008) 2128–2149
- L. Krishnamachari, D. Estrin, S. Wicker, The impact of data aggregation in wireless
  sensor networks, in: Proceedings of the 22nd International Conference on Distributed
- W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication
  protocol for wireless microsensor networks, in: Proceedings of the 33rd Annual Hawaii
- C. Ok, S. Lee, P. Mitra, S. Kumara, Distributed routing in wireless sensor networks
  using energy welfare metric, Information Sciences 180 (9) (2010) 1656–1670
  Communication, 2000 (Special issue on smart spaces and environments
- F. Marcelloni, M. Vecchio, Enabling energy-efficient and lossy-aware data compression
  in wireless sensor networks by multi-objective evolutionary optimization, Information Sciences
- S. Meguerdichian and M. Potkonjak, "Low power 0/1 coverage and scheduling
  techniques in sensor networks," Tech. Rep. 030001, University of California at Los
  Angeles, January 2003.
- D. Tian and N. D. Georganas, "A coverage-preserving node scheduling scheme
  for large wireless sensor networks," in WSN &apos;02: Proceedings of the 1st ACM
  international workshop on Wireless sensor networks and applications. New York, NY,USA:
- G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill, "Integrated coverage
  and connectivity configuration for energy conservation in sensor networks," ACM Trans.
  conserving protocol for long-lived sensor networks," in ICDCS &apos;03: Proceedings of
  the 23rd International Conference on Distributed Computing Systems. Washington, DC, USA:
  IEEE Computer Society, 2003, p. 28
- You-Chiun Wang, Chun-Chi Hu, and Yu-Chee Tseng, "Efficient Placement and
  Dispatch of Sensors in a Wireless Sensor Network"; IEEE transactions on mobile

Index Terms

Computer Science

Wireless

Keywords

Wireless Sensor Network Coverage Connectivity Lifetime energy efficient