Abstract

Cancers may abide or cycle after treatment because a brief aboriginal adjunct cells, bawled cancer stem cells, abides back to seed new tumors. Albeit scientists are not yet absolute about the bestowal cancer stem cells amusement in disease, apocalypse is acquiring that these cells are accurately antagonistic to chemotherapy and detachment, and can continue in the body deflates after treatment. Because cancer stem cells, which can cause new tumors, may endure backside after chemotherapy and radiation treatments, detecting aqueducts to aim these cells characteristically may allot a behavior to breed treatment accrual arrogant. But gaining access and analyzing cancer stem cells has been braving due to very minimal are convince in tumors and they are adverse to act and adjure alien the body. The halfway idealist of this paper is to portend the steps of cancer stem cells incident more precise and aptly. This paper decline a decipherment of adaboost algorithm to be adroit to foreshadow the concurrent steps of the cancer stem cells cardinal points. The enhanced version receives from slide detector its thoughts. The main merit of slide detector is its capability to predict the concurrent processes based on the space consumption complexity. The results show that there are clear divergence and convergence in error rate values of training and testing stages. And to obtain a precise prediction from the proposed algorithm, the threshold values should be in an average value. The results point to the proposed method is able to reduce the error rate at weak classifier number and high number training samples.
Accurate Prediction of Cancers Stem Cells Incident using Enhanced Adaboost Algorithm

References

Accurate Prediction of Cancers Stem Cells Incident using Enhanced Adaboost Algorithm

- Xindong Wu • Vipin Kumar et al., " Top 10 algorithms in data mining" , Knowl Inf Syst (2008) 14:1–37 DOI 10.1007/s10115-007-0114-2

Index Terms

Computer Science
Biomedical

Keywords
- cancer stem cells
- adaboost algorithm
- Stide detector
- Data mining prediction
- medical algorithms