Abstract

Radiation is responsible for heat transfer from fuel rods to the Pressure tube during loss of coolant. The temperature distribution of the pressure tube is obtained through experimental test runs. A Finite Difference Method and ANSYS are applied to predict the axial temperature distribution and its effect on a pressure tube by incorporating the radiative and convective boundary conditions. The results obtained using FDM and ANSYS are compared well with the experimental results. Prediction of the temperature distribution of a cylindrical pressure tube, heated by conjugate conduction and radiation from inside of it that is cooled by natural convection and radiation from outside, are reported in this paper. Pressure tube is subjected to the higher temperature at top and lower temperature at bottom. These two extreme temperatures are input to the FDM and ANSYS software. The comparison is made with the experimental results and agreement between the mathematical model (FDM) and the ANSYS results is very good.

References

- D. W. Mueller Jr., H. I. Abu-Mulaweh, Prediction of the temperature in a fin cooled by
- A. Mezrhab, H. Bouali, H. Amaoui, M. Bouzidi, Computation of combined
natural-convection and radiation heat-transfer in a cavity having a square body at its center, J.
- Abdul Aziz, F. Khani, Convection–radiation from a continuously moving fin of variable
thermal conductivity, Journal of the Franklin Institute 348 (2011) 640–651
- W. H. Gray and N. M. Schnurr, A comparison of the finite element and finite difference
methods for the analysis of steady two dimensional heat conduction problems, computer
methods in applied mechanics and engineering 6 (1975) 243-245
- B. L. Wang, J. C. Han, Y. G. Sun, A finite element/finite difference scheme for the
non-classical heat conduction and associated thermal stresses, Finite Elements in Analysis and
Design, appeared online in elsevier. com
- Wenchun Jiang, Jianming Gong, S. T. Tu, A study of the effect of filler metal thickness
on tensile strength for a stainless steel plate-fin structure by experiment and finite element
method, Materials and Design 31 (2010) 2387–2396
- S. B. Bopche, Arunkumar Sridharan, Experimental investigations on decay heat
removal in advanced nuclear reactors using a single heater rod test facility: Air alone in the
- Sadia Siddiqua, M. A. Hossain, Rama Subba Reddy Gorla Conduction-radiation effects
on periodic magneto hydrodynamic natural convection boundary layer flow along a vertical
- Yasar Islamoglu Finite element model for thermal analysis of ceramic heat exchanger
tube under axial non-uniform convective heat transfer coefficient, Int. J. Materials and Design
- S. W. Churchill, H. H. S. Chu, Correlating equations for laminar and turbulent free
convection from a horizontal cylinder, Int. J. Heat Mass Transfer 18 (1975) 1049-1053
- P. Razelos, A critical review of extended surface heat transfer, Heat Transfer Engg. 24
- R. H. Yeh, An analytical study of the optimum dimensions of rectangular fins and

Index Terms

Computer Science
Applied Sciences
Keywords
Temperature nuclear reactor ansys