Abstract

In mobile communication, routing data through intermediate mobile node is a challenging task due to high mobility of nodes which causes rapid change in network topology and frequent disconnection between pair of nodes. To address these issues, Mobile Relay Station (MRS) is introduced into the network based on IEEE 802.16j standard. The MRS features are similar to the Fixed Relay Station (FRS), however the MRS has capability to move as Mobile Station (MS). In intermittent connection, by adapting the features of Delay Tolerant Network (DTN), the
MRS can store and carry the data until it finds the destination to forward the data. Assuming that MS is aware of its own movement as well as its closest neighbor nodes. In this paper, Dynamic Routing Algorithm (DyRA) has been proposed to select the next hop node towards the destination. The forwarding decision is based on a computed metric which is a combination of Packet Reception Rate (PRR), Link Expiration Time (LET) information and Number of Slots (NoS) available at the candidate MRS nodes. Also, the proposed Relay-based Vehicular Network (RVN) in WiMAX using cross layer design (CLD) is designed to select the optimal next hop node and set a new route when the current routing path is no longer available. The preliminary results for system throughput performance and average end-to-end delay are analyzed. The results show that by deploying relay-based in vehicular networks can enhance system throughput in terms of packet loss ratio (PLR), packet delivery ratio (PDR), and average end-to-end (ETE) delay. NCTU's simulation environment has been used to study the mobile node performance.

References


Index Terms

Computer Science Wireless

Keywords

Route selection Link quality Link stability Cross layer design