Abstract

Osteoporosis is a disease of bones. It leads to an increased risk of fracture. The improvement in biosensor for measuring the strain on bones is required. A photometric biosensor is modeled. It is simulated. The performance of the biosensor is analyzed using Artificial Neural Network (ANN) in terms of layers of neural network. Number of epochs/iterations are carried out. The performance is analyzed in terms of mean square error (mse). The percentage accuracy of sensor is obtained as 93%.

References

Performance Analysis of Photometric Strain Biosensor for Bones using Artificial Neural Network

- Abdullah, J.; Ahmad, M.; Lee Yook Heng; Karuppiah, N.; Sidek, H.; 2005, Fabrication of an optical biosensor based on immobilized MBTH and tyrosinase for determination of phenolic compounds; Sensors and the International Conference on new Techniques in Pharmaceutical and Biomedical Research, Asian Conference on, pp. 103-106, 5-7 (Sept. 2005)
- Guo-Zhu Chu; Chen Cui; Stacey, D. A.; 1994, A modular artificial neural network system for the classification and selection of coatings for a chemical sensor array; Neural Networks, IEEE World Congress on Computational Intelligence, IEEE International Conference on, pp. 3342-3347 vol. 5, 27 Jun-2 Jul 1994
- Slaughter, G. E.; Hobson, R. S.; 2006, Artificial Neural Network for Temporal Impedance Recognition of Neurotoxins; Neural Networks, IJCNN, pp. 06. International Joint Conference on, pp. 2001-2008, 0-0 0
- Preeti, Dr. H. M. Rai, 2012 Modeling of Fiber Optic Biosensor to Measure Strain on Bones for Detecting Onset of Osteoporosis; IJSER, vol. 3, no. 7.

Index Terms

Computer Science
Artificial Intelligence
Keywords
biosensor  bones  mean square error  microbend  layer  strain