Abstract

The Rough Set (RS) theory can be considered as a tool to reduce the input dimensionality and to deal with vagueness and uncertainty in datasets. Over the years, there has been a rapid growth in interest in rough set theory and its applications in artificial intelligence and cognitive sciences, especially in research areas such as machine learning, intelligent systems, inductive reasoning, pattern recognition, data preprocessing, knowledge discovery, decision analysis, and expert systems. This paper discusses the basic concepts of rough set theory and point out some rough set-based research directions and applications. The discussion also includes a review of rough set theory in various machine learning techniques like clustering, feature selection and rule induction.

References

- Agrawal, R., Imielinski, T. and Swami, A. Mining association rules between sets of items in large databases. in Proceedings of the 1993 ACM SIGMOD International Conference
- Agrawal, R. and Srikanat, R. Fast algorithms for mining association rules in large
databases. in J. B. Bocca, M. Jarke, and C. Zaniolo,(Eds.), Proceedings of the 20th
International Conference on Very Large Data Bases, VLDB,(Santiago, Chile ,1994), Morgan
Kaufmann , 487-499.
and artificial neural networks for business failure predictions. Expert Systems with Applications,
18, 2,(2000),65-74.
- Almuallem,H. and Dietterich, T. G. Learning with many irrelevant features. in
Proceedings of the 9th National Conference on Artificial Intelligence, (Anaheim, California
- Al-Maqaleh, B. M. and Bharadwaj, K. K. Genetic programming approach to
hierarchical production rule discovery. Transactions on Engineering, Computing and
Technology,6(2005), 271–274.
- Arco, L. , Bello, R. , Caballero, Y. and Falcon, R. Rough Text Assisting Text Mining:
Focus on Documents Clustering Validity. In R. Bello, R. Falc N, W. Pedrycz (Eds.) Granular
Computing at the Junction of Rough Sets and Fuzzy Sets , (Heidelberg, 2008) , Springer-Verlag
,229-248.
- Asharaf, S. , Shevade, S. K. and Murty, N. M. Rough support vector clustering. Pattern
Recognition, 38(2005), 1779–1783.
- Asharaf, S. , Shevade, S. K. and Murty, N. M. Rough set based incremental clustering
- Baqui, S. , Just, J. and Baqui, S. C. Deriving strong association rules using a dependency
criterion, the lift measure. International Journal of Data Analysis. Technical Strategy,
1,3(2009),297–312.
- Bazan, J. , Skowron, A. and Synak, P. Dynamic reducts as a tool for extracting laws
from decision tables. in Proceedings of the Symposium on Methodologies for Intelligent
- Bazan, J. A comparison of dynamic and non-dynamic rough set methods for extracting
laws from decision system. In Polkowski, L. , Skowron, A. Eds. Rough Sets in Knowledge
pattern extraction from classifiers. Electronic Notes in Theoretical Computer Science,
- Bell, D. and Guan, J. Computational methods for rough classification and discovery.
- Berzal,F. ,Blanco,I. ,Sanchez,D. and Vila,M. A. A new framework to assess association
rules. in Symposiom on Intelligent Data Analysis, Lecture Notes in Computer Sciences.
2189(2001), 95–104.
- Beynon, M. J. and Peel, M. J. Variable precision rough set theory and data
discretisation: An application to corporate failure prediction. Omega, International Journal of
- Bharadwaj, K. K. and Varshneya, R. Parallelization of hierarchical censored
- Bharadwaj, K. K. and Al-Maqaleh, B. M. Evolutionary approach for automated
discovery of censored production rules. Enformatika, 10(2005), 147–152.

Do Prado H. A, Engel, P. M. and Filho, H. C. Rough clustering: an alternative to find

- Han, J., Pei, J., Yin, Y. and Mao, R. Mining frequent patterns without candidate generation. Data Mining and Knowledge Discovery, 8(2004), 53–87.

- Peters, G. and Lampart, M. A partitive rough clustering algorithm. Proceedings of the
Fifth International Conference on Rough Sets and Current Trends in Computing (RSCTC’06), Lecture Notes in Artificial Intelligence, LNAI-4259, (Kobe, Japan, 2006), Springer, 657-666.

- Richards, D. and Compton, P. An alternative verification and validation technique for an alternative knowledge representation and acquisition technique. Knowledge-Based Systems, 12,1–2(1999), 55–73.
- Traina Jr,C. , Traina,A. , Wu,L. and Faloutsos,C. Fast Feature selection using the fractal dimension. in Proceedings of the 15th Brazilian Symposium on Databases(SBBD), (Maringa, Brazil,2000), Brazilian Computer Society Press,177-188.

Knowledge and Data Engineering, 12,3(2000),372–390.
 23rd International Conference of the North American Fuzzy Information Processing Society
 (NAFIPS 2004), (Banff, Canada,2004), North America Fuzzy Information Processing
 Society,434-439.
 - Zhong, N. , Dong, J. Z. and Ohsuga, S. Using Rough sets with heuristics for feature
 University,USA,2005.
 - Ziarko, W. P. (Ed.) . Rough Sets, Fuzzy Sets and Knowledge Discovery. in
 Proceedings of International Workshop on Rough Set and Knowledge Discovery,. Canada,

Index Terms

Computer Science
Artificial Intelligence

Keywords

Clustering
Rule Induction
Feature Selection