Abstract

Cloud Computing is an emerging technique in recent years that provides computing as a services. In order to maximize resources utilization, many scheduling algorithms were analyzed and implemented. Job scheduling using Berger model is one of the algorithm for scheduling jobs. The combination of Berger model and Neural Network would overcome the disadvantage of Berger Model i.e. incomplete task when tasks-resources match is not achieved. In this work, the submitted jobs are classified based on different parameters like bandwidth, memory, Completion time and Resources Utilization. The classified user tasks are passed to the neural network. Neural network consists of input layer, hidden layer and output layer. With the help of hidden layer, the jobs are matched with the resources by adjusting weight. The performance of the system has been improved by means of efficient use of bandwidth, reducing a completion time which in turn improves resources utilization. CloudSim, a simulation tool has been used to simulate and the results shows reduced completion time and increased performance of the system.

Refer
Efficient Resources Allocation for Different Jobs in Cloud

References

- VMware, "Virtualization Overview", online @ vmware.com/pdf/virtualization.pdf.
- Kothalil Gopalakrishnan Anilkumar and Thitipong Tanprasert, "Neural Network Based Priority Assignment for Job Scheduler", Faculty of science and Technology, Assumption University Bangkok, Thailland Vol 9, issue 3, pp-181-186.
- Udo Seiffert, "Artificial Neural Networks on Massively Parallel Computer Hardware", European Symposium on Artificial Neural Networks, pp. 319-330 april 2002.

- Rajkumar Buyya, Rajiv Ranjan and Rodrigo N. Calheiros, "Modeling and

Index Terms

Computer Science

Networks

Keywords

Cloud Computing Job Scheduling Neural Network Berger model CloudSim.