Abstract

The increasing complexity of software is incessant, this phenomenon is even more accentuated when temporal aspects are introduced, hence the need for rigorous verification methods. The main purpose of this paper is to propose a quantitative verification approach based on model checking. Their properties are expressed in TCTL (Timed Computation Tree Logic) on real-time systems. The system behavior is expressed by temporal labeled systems; namely Durational Action Timed Automata model (DATA* model). This model supports the expression of the parallel behavior, the temporal and structural non-atomicity of actions and urgency. Our approach is to interpret the behavior described by DATA* to Timed Safety Automata. The environment UPPAAL allows us verifying quantitative temporal properties, especially the bounded liveness.

References

Verification of Durational Action Timed Automata using UPPAAL

(VECoS'2008), University of Leeds, UK. BCS.

 l'automate des regions agrégé d'actions, MISC REPORT 11001, Universite Mentouri, 25000 Constantine, Algerie.
- [CE81] Clarke, E. M. and Emerson, E. A. 1981. Design and synthesis of
 synchronization skeletons using branching time temporal logic. In Proc. of Workshop on Logic
 of Programs, LNCS 131, pages 52 – 71. Springer-Verlag.
- D. Kozen. 1983. Results on the propositional mu-calculus. Theoretical Computer
 Informatica, 40(5), (March 2004).
- Gómez, R. 2009. Verification of Timed Automata with Deadlines in Uppaal. Technical
 Report No. 02-08. University of Kent at Canterbury, (July 8, 2009).

Index Terms

Computer Science

Information Sciences

Keywords

Formal verification Model Checking TCTL DATA*’s model Timed Safety

Automata

Bounded Liveliness

UPPAAL