Abstract

The power delivered by a photovoltaic power system depends strongly on the level of sunlight, the cell temperature and the nature of the load supplied. It is therefore highly unpredictable. This paper presents the improvement of the MPPT algorithm Perturb and Observe (P & O) under rapidly changing climatic conditions. The results of the simulation in Simulink confirm the efficiency of the proposed method.

References

Improvement of the “Perturb and Observe” MPPT Algorithm in a Photovoltaic System under Rapidly Changing Climatic Conditions

Dezso Sera, Remus Teodorescu, "PV panel model based on datasheet values", Aalborg University, 2006.

Trishan Esram, Student Member, IEEE, and Patrick L. Chapman, Senior Member, IEEE, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques", IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006.

D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, "Improved MPPT method for rapidly changing environmental conditions", Aalborg University/Institute of Energy Technology, Aalborg, Denmark, 2006.

Index Terms
Keywords

Photovoltaic system Perturb and Observe MPPT algorithm Modeling Improvement
Simulation
Rapidly changing climatic conditions