Abstract

This paper presents the performance comparison between the various soft computing techniques used for optimization of the PID controllers, implemented for speed control system for a DC motor. PID controllers are extensively used in industrial control because of their simplicity and robustness, but when industrial control is imperilled by external glitches, leads to the instability of the system. PID controller optimization using soft-computing algorithms lays emphases on obtaining the best possible PID parameters for improving the stability of the system. The PID controller has been implemented for speed control of a DC motor and the results obtained from optimization using soft-computing are compared with the ones derived from the Ziegler-Nichols method, and comparatively better results are obtained in Stimulated Annealing case.

References

- G. Haung and S. Lee, "PC based PID speed control in DC motor," IEEE
Optimal Tuning of PID Controller for DC Motor using Bio-Inspired Algorithms

- Kickpatrik S., Gelatt C. D., Vecchi M. P. (1983), "Optimization by Stimulated Annealing" Science (220) 4508, p-671-680,
- Berrsimas D. , Tsitsiklis, " Stimulated Annealing" (1993), Statistical Science, Vol. 8, No. 1, 10-15
- MATLAB and SIMULINK Documentation

Index Terms

Computer Science Control Systems

Keywords
PID Controllers Controller Optimization DC Motor Genetic Algorithms Stimulated Annealing

Multi-objective Genetic Algorithms