Abstract

Chain multiplication of matrices is widely used for scientific computing. It becomes more challenging when there is a large number of floating point dense matrices. Because, floating point operations take more time than integer operations. It would be interesting to lower the time of such chain operations. Now-a-days every multicore processor system has built in parallel computational power. This power can only be utilized when compatible parallel algorithms were used. So, in this work, a shared memory based parallel algorithms has been proposed to compute the multiplication of a long sequence of dense matrices. The algorithms have been tested with long sequence of matrices as input. The approach has been with 2×108 flops. The input matrix sequence length was typically varied from 2 to 30. Maximum number of processors used was eight (Eight core processor). Different parameters like speedup, efficiency etc. were also noted. It was concluded that the parallel algorithms could achieve approximately 90% efficiency at best case. The algorithms also showed improved scalability.

References

Matrix Multiplication of Dense Matrices: Proposing a Shared Memory based Parallel Algorithm


- D. A. Patterson, J. L. Hennessy; Computer Organization and Design: The
- T. Dash, T. Nayak, S. Chattopadhyay; Handwritten Signature Verification (Offline) using Neural Network Approaches: A Comparative Study. International Journal of Computer Applications. ISSN: 0975-8887, November’s; accepted, in press.

Index Terms

Computer Science
Algorithms

Keywords
Chain multiplication computing dense matrix multicore shared memory flops efficiency speedup scalability