Abstract

The IEEE focuses on the physical and MAC layer of Wireless Sensor Networks (WSN) and the Internet Engineering Task Force (IETF) works on Network layer and higher in the seven layer OSI reference model for networking. The IEEE 802. 15. 4 standard, defines the physical layer (PHY) and medium access control (MAC) sub layer specifications for low-data-rate wireless connectivity with fixed, portable, and moving devices with no battery or very limited battery consumption requirements. In this paper, the energy consumption of a practical Wireless Sensor Network scenario is modeled at the bottom three layers of the traditional networking stack—the physical layer, data link layer and the MAC layer. Using these models, the optimization of energy consumption of WSN nodes is achieved using different modulation schemes to maximize the network lifetime. The approach is to design and simulate a wireless sensor network scenario consisting of 12 nodes in 500x500 m area and optimize the energy consumption (radio energy + circuit energy) of each node using suitable modulation techniques and reduce the Energy Consumption up to 80% in a home automation scenario.
References

- Bruno Bougard, Denis C. Daly "Energy Efficiency of the IEEE 802.15.4 Standard in Dense Wireless Microsensor Networks: Modeling and Improvement Perspectives" Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05) 1530-1591/05 IEEE.

- "MATLAB" 7.0 (R 2009) www.mathworks.com/simulink

Index Terms

Computer Science Wireless Networks

Keywords

IEEE 802.15.4 Standard Wireless Sensor Networks Modulation Techniques
Modeling sensor node energy consumption
Energy Efficiency